Semaine 6

Topologie des e.v.n. Suites et séries de fonctions

Étudiant nº 1 :

Exercice nº 1 -

Pour tout $n \in \mathbb{N}^*$, on pose $f_n(x) = \frac{e^{-x}}{1 + n^2 x^2}$ et $u_n = \int_0^1 f_n(x) dx$.

- 1. Étudier la convergence simple de la suite de fonctions $(f_n)_n$ sur [0;1].
- 2. Soit $a \in]0;1[$. La suite de fonctions $(f_n)_n$ converge-t-elle uniformément sur [a;1]?
- 3. La suite de fonctions $(f_n)_n$ converge-t-elle uniformément sur [0;1]?
- 4. Trouver la limite de la suite $(u_n)_{n\in\mathbb{N}^*}$.

Source : CCINP ex 27

Exercice nº 2

Considérons la suite de fonctions $(f_n)_n$ définies, sur [0;1], par $f_n(x) = x^n(1-x)$. Démontrer que $(f_n)_n$ converge uniformément vers 0 sur [0;1].

Exercice nº 3

(1er) Théorème de Dini

Soit K un compact d'un espace vectoriel de dimension finie et $(f_n)_n$ une suite croissante d'éléments de $\mathcal{C}(K,\mathbb{R})$.

Démontrer que si la suite $(f_n)_n$ converge simplement vers $f \in \mathcal{C}(K,\mathbb{R})$, alors la convergence est uniforme.

Semaine 6

Topologie des e.v.n. Suites et séries de fonctions

Étudiant n°2:

Exercice nº 1

- 1. Soit X un ensemble, $(g_n)_n$ une suite de fonctions de X dans \mathbb{C} et g une fonction de X dans \mathbb{C} . Donner la définition de la convergence uniforme sur X de la suite de fonctions $(g_n)_n$ vers la fonction g.
- 2. On pose $f_n(x) = \frac{n+2}{n+1}e^{-nx^2}\cos(\sqrt{n}x)$.
 - (a) Étudier la convergence simple de la suite de fonctions $(f_n)_n$.
 - (b) La suite de fonctions $(f_n)_n$ converge-t-elle uniformément sur $[0; +\infty[$?
 - (c) Soit a > 0. La suite de fonctions $(f_n)_n$ converge-t-elle uniformément sur $[a; +\infty[$?
 - (d) La suite de fonctions $(f_n)_n$ converge-t-elle uniformément sur $]0; +\infty[?]$

Source : CCINP ex 9

Exercice nº 2

Considérons la suite de fonctions $(g_n)_n$, définies sur [0;1], par $g_n(x) = x^n \sin(\pi x)$. Démontrer que $(g_n)_n$ converge uniformément vers 0 sur [0;1].

- Exercice nº 3 -

(2ème) Théorème de Dini

Soit $(f_n)_n$ une suite de fonctions réelles sur $[a,b] \subset \mathbb{R}$, avec a < b, convergeant simplement vers une fonction f continue sur [a,b]. On suppose que les fonctions f_n sont toutes croissantes. Montrer que la suite $(f_n)_n$ converge uniformément vers f.

Semaine 6

Topologie des e.v.n. Suites et séries de fonctions

<u>Étudiant n° 3</u>:

Exercice nº 1

1. Soit X une partie de \mathbb{R} , $(f_n)_n$ une suite de fonctions de X dans \mathbb{R} convergeant simplement vers une fonction f. On suppose qu'il existe une suite $(x_n)_n$ d'éléments de X telle que la suite $(f_n(x_n) - f(x_n))_n$ ne tende pas vers 0.

Démontrer que la suite de fonctions $(f_n)_n$ ne converge pas uniformément vers f sur X.

- 2. Pour tout $x \in \mathbb{R}$, on pose $f_n(x) = \frac{\sin(nx)}{1 + n^2x^2}$.
 - (a) Étudier la convergence simple de la suite $(f_n)_n$.
 - (b) Étudier la convergence uniforme de la suite $(f_n)_n$ sur $[a; +\infty[$ (avec a > 0), puis sur $]0; +\infty[$.

Source : CCINP ex 11

Exercice nº 2

Démontrer que la suite de fonctions définies sur \mathbb{R}_+ par $f_n(x) = e^{-nx} \sin(nx)$ converge simplement sur \mathbb{R}_+ , que la convergence est uniforme sur tout intervalle de la forme $[a; +\infty[\ (a>0), \text{ mais qu'elle n'est pas uniforme dur } \mathbb{R}_+$.

- Exercice no 3

Montrer que la suite de fonction $(f_n)_n$ définies par :

$$f_n \colon \mathbb{C} \to \mathbb{C}$$

$$z \mapsto \left(1 + \frac{z}{n}\right)^n$$

converge uniformément sur tout compact de \mathbb{C} vers $f: z \mapsto e^z$.